36th International Conference on High Energy Physics Melbourne, 4 – 11 July 2012

CP VIOLATION IN HADRONIC B DECAYS AT CDF

Mirco Dorigo
(INFN and University of Trieste)
On behalf of the CDF Collaboration

HADRONIC B DECAYS

Higher-order amplitudes (penguins, box) play significant role. Access to CKM phases from amplitudes' interferences (e.g. γ , β_s).

NP as new source of CP-violation: provide(enhance) new(strongly-suppressed) operators; introduce new weak phases.

Hard part: often disentangle NP from large hadronic uncertainties.

Today from CDF

- □ Direct CPV in $B_{(s)}^{0} \rightarrow K^{+}\pi^{-}$ and $\Lambda_{b}^{0} \rightarrow pK^{-}/\pi^{-}$ with full data set.
- \square B_s⁰ mixing phase, \intercal _s and $\Delta \Gamma$ _s, with full data set.
- \square BR of $B_s^0 \rightarrow D_s^{(*)+} D_s^{(*)-}$ and of $B_s^0 \rightarrow J/\psi \phi$ with full data set

DIRECT CPV IN CHARMLESS b-HADRON DECAYS

$$B^{0}$$
→ $K^{+}\pi^{-}$, $\pi^{+}\pi^{-}$, $K^{+}K^{-}$
 B_{s}^{0} → $K^{-}\pi^{+}$, $\pi^{+}\pi^{-}$, $K^{+}K^{-}$
 Λ_{b}^{0} → $p\pi^{-}$, pK^{-}

Direct CP violation

 $K\pi$ Puzzle from Belle. SM or NP?

Likely SM, large hadronic uncertainties.

Need experimental constraints from several decays.

 B_s^0 sector can shed light. $B_s^0 \rightarrow K^+\pi^-$ nearly model independent test; Expect $A_{CP} \sim 30\%$ -50%, consistent with first LHCb evidence: $(27 \pm 8 \pm 2)\%$ - PRL 108 (2012).

Baryon decays provide additional information.

New for ICHEP:

direct CP asymmetries with full CDF Run II datset

STRATEGY

Equal b and \overline{b} production.

Flavor specific decays. b-flavor from final-state's charges.

"Count and correct" (for detector-induced charge asymmetries).

$$A_{CP} = \frac{N(b \to f) - c_f N(\overline{b} \to \overline{f})}{N(b \to f) + c_f N(\overline{b} \to \overline{f})}$$

Individual modes overlap in a single peak (width $\sim 38 \text{ MeV/c}^2$).

SAMPLE COMPOSITION

Signal yield from a Likelihood fit. Ensure statistical separation-power combining information from kinematics (mass and momenta) and particle ID.

Data-driven approach

- □ 2.0 σ separation for $K^+\pi^-/\pi^+K^-$. Calibrate on large sample of $D^0 \rightarrow K^-\pi^+$ and $\Lambda^0 \rightarrow p\pi^-$.
- \square $\pi\pi$ mass resolution Checked on large samples of $D^0 \rightarrow K^-\pi^+$ and $D^0 \rightarrow \pi^-\pi^+$.
- Detector-induced asymmetry O(1-2%) measured on data with $D^0 \rightarrow K^-\pi^+$ and $\Lambda^0 \rightarrow p\pi^-$ decays

RESULTS

$$A_{CP}(B^0 \rightarrow K^+\pi^-) = (-8.3 \pm 1.3 \pm 0.3)\%$$

 $A_{CP}(B_s^0 \rightarrow K^-\pi^+) = (22 \pm 7 \pm 2)\%$

Competitive measurement for B⁰.

For B_s⁰ confirm LHCb result with same resolution.

Strong evidence $(4.5 \, \sigma)$ combining CDF and LHCb measurements:

$$A_{CP}(B_s^0 \to K^+\pi^-) = (24.2 \pm 5.4)\%$$

$$A_{CP}(\Lambda_b^0 \rightarrow p\pi^-) = (7 \pm 7 \pm 3)\%$$

$$A_{CP}(\Lambda_b^0 \rightarrow pK^-) = (-9 \pm 8 \pm 4)\%$$

Uncertainties halved w.r.t. the only last CDF measurement.

Large asymmetries disfavored.

CDF Note 10726

$$N_{tot}(B^0 \rightarrow K^+\pi^-) \sim 11700$$

$$N_{tot}(B_s^0 \rightarrow K^-\pi^+) \sim 900$$

$$N_{tot}(\Lambda_b^0 \rightarrow p\pi^-) \sim 450$$

$$N_{tot}(\Lambda_b^0 \rightarrow pK^-) \sim 600$$

SEARCH FOR NP IN B_s MIXING

CP violation in B_s⁰ mixing
Can be significantly altered by NP.

2011 DØ

~4 σ deviation from SM in B semileptonic asymmetry. Independent cross-check is crucial.

Constrain BSM physics in B_s⁰

- \square CP-violating mixing phase β_s largely suppressed in SM
- $\begin{array}{c} \blacksquare \ B_s{}^H B_s{}^L \ decay \ difference \ \Delta \Gamma_s \\ \neq 0 \ in \ SM \end{array}$

 $B_s^0 \rightarrow J/\psi \phi$ Exploit interference between decays w/ and w/o flavor oscillations.

B_s MIXING PHASE WITH $B_s^0 \rightarrow J/\psi \phi$

Joint fit to mass, production flavor, decay-time, decay-angles

Look at other B ($\epsilon D^2 \sim 1.4\%$)

Look at K in fragmentation with B_s ($\epsilon D^2 \sim 3\%$)

Opposite Side

Jet charge

Lepton

Disentangle CP-even/CP-odd final state Include J/ ψ KK S-wave contribution

B_s MIXING RESULTS

Full dataset analyzed. Consistent with SM ($<1\,\sigma$) and other experiments.

β_s in [-0.06, 0.30] rad @ 68% C.L.

CDF Note 10778

Assuming SM CP-violation,

$$\Delta\Gamma_{\rm s} = 0.068 \pm 0.026 \pm 0.007 \text{ ps}^{-1}$$

 $T_{\rm s} = 1.528 \pm 0.019 \pm 0.009 \text{ ps}$

Agreement and competitive with other experiments.

UPDATING THE REFERENCE

Current PDG BR($B_s^0 \rightarrow J/\psi \phi$) dominated by CDF Run I measurement (1996), ~30% uncertainty.

Update with full Run II statistic

Normalize to BR(B $^{\circ}\rightarrow J/\psi K^{*}$). Account for S-wave contributions (dominated syst. uncertainty).

$$\frac{f_s}{f_d} \frac{Br(B_s \to J/\psi \phi)}{Br(B^0 \to J/\psi K^*)} = 0.239 \pm 0.003(stat.) \pm 0.019(sys.)$$

Using recent Belle result, extract f_s/f_d and measure the dependence on p_T .

$$f_s/f_d = (25.4 \pm 0.3 \pm 2.0 \pm 4.4)\%$$

Or get the BR(B_s⁰ \rightarrow J/ ψ ϕ) using known f_s/f_d and BR(B⁰ \rightarrow J/ ψ K*)

BR =
$$(1.18 \pm 0.02 \pm 0.09 \pm 0.15) 10^{-3}$$

FROM THE CP-EVEN SIDE

 $B_s^{\ 0} \rightarrow D_s^{\ (*)+} D_s^{\ (*)-}$ Predominantly CP-even. Can probe Γ_L .

Use 6.8 fb⁻¹ collected by displaced track trigger to measure BR.

Simultaneous fit to signal $B_s^0 \rightarrow D_s^{(*)+} D_s^{(*)-}$ and normalization mode $B^0 \rightarrow D_s^{+} D^{-}$

Full $D_s^+ \rightarrow K^+ K^- \pi^+$ Dalitz structure for precise determination of acceptance.

$$\begin{split} &\mathsf{BR}(\mathsf{B}_{\mathsf{S}} \to \mathsf{D}_{\mathsf{S}}^{+} \, \mathsf{D}_{\mathsf{S}}^{-}) = (0.49 \pm 0.06 \pm 0.05 \pm 0.08) \, \%, \\ &\mathsf{BR}(\mathsf{B}_{\mathsf{S}} \to \mathsf{D}_{\mathsf{S}}^{*\pm} \, \mathsf{D}_{\mathsf{S}}^{\mp}) = (1.13 \pm 0.12 \pm 0.09 \pm 0.19) \, \%, \\ &\mathsf{BR}(\mathsf{B}_{\mathsf{S}} \to \mathsf{D}_{\mathsf{S}}^{*+} \, \mathsf{D}_{\mathsf{S}}^{*-}) = (1.75 \pm 0.19 \pm 0.17 \pm 0.29) \, \%, \\ &\mathsf{BR}(\mathsf{B}_{\mathsf{S}} \to \mathsf{D}_{\mathsf{S}}^{(*)+} \, \mathsf{D}_{\mathsf{S}}^{(*)-}) = (3.38 \pm 0.25 \pm 0.30 \pm 0.56) \, \%, \end{split}$$

CONCLUSIONS

Data taking ended in September 30th 2011. Getting analyses finalized in full dataset. Shown results are less than 6 months old.

CDF keeps contributing to HF while passing baton to LHC experiments.

Confirm LHCb direct CPV in $B_s^{\ 0} \rightarrow K^+\pi^-$ with same resolution, providing strong evidence. Unique A_{CP} measurements in $\Lambda_b^{\ 0}$ decays.

 $B_s{}^o$ mixing phase closer to SM. Competitive measurements of $\tau_{s,}\Delta\Gamma_s$

Precise BR measurements $(B_s^0 \rightarrow D_s^{(*)+} D_s^{(*)-}, B_s^0 \rightarrow J/\psi \phi)$

Will focus on measurements that are unique to Tevatron or systematics-limited.
Still interesting results to come.

CDF

10 fb⁻¹ of $p\bar{p}$ collisions @ 2 TeV on tape.

All species of heavy flavors.

Good tracking, $\sigma(p_T)/p_T^2=0.1\%$. 9 MeV of B mass resolution and 90 fs of decay-time resolution for $B_s^0 \rightarrow J/\psi \phi$ decays.

Powerful triggers

Silicon for tracks displaced from $p\bar{p}$ vertex (45 μm IP resolution). Low- p_T muons for J/ ψ X final state (80% acceptance @ $|\eta|$ <1)

Shut down 30 Sept. 2011. Getting the analyses finalized in full dataset.

$\mathsf{B} o \mathsf{HH}'$ FIT PROJECTIONS

B → HH' SYSTEMATICS

source	$A_{CP}(B^0 o K^+\pi^-)$	$A_{CP}(B_s^0 \to K^-\pi^+)$	$A_{CP}(\Lambda_h^0 o p\pi^-)$	$A_{CP}(\Lambda_b^0 o pK^-)$	
Charge asymm. of momentum p.d.f	0.0011	0.0025	0.0009	0.0022	
Signals momentum p.d.f.	0.0013	0.0043	0.0054	0.0103	
Combinatorial back. momentum p.d.f	0.0004	0.0072	$\bigcirc{0.0257}$	0.0065	
Physics back. momentum p.d.f	0.0008	0.0002	0.0003	0.0004	
Signals mass p.d.f.	0.0002	0.0066	0.0018	0.0006	
Combinatorial back. mass p.d.f.	< 0.0001	0.0001	< 0.0001	< 0.0001	
Physics back. mass p.d.f	0.0001	0.0006	0.0005	0.0001	
Particle Identification model	0.0023	0.0066	0.0040	0.0046	
Charge asymmetry	0.0014	0.0013	0.0094	0.0096	
Triggers relative efficiency	0.0003	0.0083	0.0004	0.0034	
Nominal b-hadrons masses	0.0001	0.0049	0.0007	0.0008	
$p_T(\Lambda_b^0) ext{ spectrum}$	0.0001	0.0010	0.0052	0.0021	
Λ_b^0 polarization	< 0.0001	0.0027	0.0089	0.0364	
TOTAL	0.003	0.02	0.03	0.04	

THE MILD 2008 EXCITEMENT

$\Delta\Gamma_{\rm s}$: Systematics

Source of systematic effect	$c\tau(B_s^0) \ [\mu \ \mathrm{m}] \ .$	$\Delta\Gamma$ [ps $^{-1}$]	$ A_{\parallel}(0) ^2$	$ A_0(0) ^2$	δ_{\perp}
Signal Angular Efficiency	0.29	0.0014	0.0134	0.0162	0.076
Mass Signal Model	0.17	0.0007	0.0006	0.0020	0.018
Mass Bkg Model	0.14	0.0006	0.0003	0.0002	0.034
ct Resolution	0.52	0.0010	0.0004	0.0002	0.066
ct Bkg	1.31	0.0057	0.0006	0.0012	0.064
Angular Bkg	0.46	0.0037	0.0011	0.0022	0.009
Sigma mass	0.85	0.0006	0.0003	0.0002	0.036
Sigma ct	0.63	0.0006	0.0003	0.0002	0.038
$B_d \to J/\psi K^*$ cross-feed	0.18	0.0018	0.0002	0.0015	0.034
SVX alignment	2.0	0.0004	0.0002	0.0001	0.034
Pull bias	0.2	0.0012	0.0021	0.0008	0.02
ТОТ	2.7	0.007	0.014	0.017	0.15